
Combining Functional and Automata Synthesis
to Discover Causal Reactive Programs

Ria A. Das 1 Joshua B. Tenenbaum 1 Armando Solar-Lezama 1 Zenna Tavares 2

Abstract

While program synthesis has recently garnered
interest as an alternative to deep-learning-based
approaches in AI, it still faces several limitations.
One is that existing methods cannot learn models
with time-varying latent state, a common feature
of real-world systems. We develop a new synthe-
sis approach that overcomes this challenge by unit-
ing two disparate communities within synthesis:
functional synthesis and automata synthesis. We
instantiate our algorithm in the domain of causal
learning in 2D, Atari-style grid worlds, and our
preliminary evaluation shows promising results.

1. Introduction
In the last decade, the traditional view of program syn-
thesis as a technique for automating programming tasks
has expanded with the growth of the following hypothesis:
Programs, with their unique ability to compactly and inter-
pretably represent a wide variety of structured knowledge,
may also be an important model representation in artificial
intelligence (AI) systems. Recent work has demonstrated
the potential of using programs as a modeling mechanism in
a number of domains, such as learning rule-based programs
describing language phonology and synthesizing computer-
aided design (CAD) programs from 3D mesh models (Ellis
et al., 2019. In prep.; Nandi et al., 2020).

Much of this work at the intersection of program synthesis
and AI can be framed as addressing the challenge of theory
induction: Given an observation, what is the underlying
theory or model that generates or explains that observation?
We use theory to mean not just formal scientific theories,
but also everyday cognitive explanations that humans derive
on the fly to explain new observations. For example, a child
who has figured out how a new toy works after a few minutes

*Equal contribution 1MIT 2Basis and Columbia University.
Correspondence to: Ria A. Das <riadas@mit.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

of play has come up with a theory of the toy’s mechanism.
Despite the promise of formulating theory induction as pro-
gram synthesis, however, existing methods of program syn-
thesis are not yet suited to capture the richness of the space
of theories that humans can learn from data, be it scientific
or casual. One critical limitation is that many real world phe-
nomena are reactive, time-varying systems, which update in
reaction to new inputs at every time. However, current meth-
ods of inductive program synthesis—synthesizing programs
from input-output examples—cannot synthesize non-trivial
reactive models. This is because synthesizing time-varying
latent state, the key step in learning any interesting reactive
model, is a fundamental problem that standard inductive
program synthesis techniques were not designed to handle.

Specifically, most existing inductive program synthesis ap-
proaches are purely functional, meaning that both the inputs
and outputs are fully observed, and the task is to construct a
function taking one to the other. In other words, there are
no concerns about identifying latent state, as the inputs and
outputs are fully known (Ellis et al., 2019). In a few other
cases, inductive synthesis has also been applied to tackle the
setting of unsupervised learning, in which hidden (latent)
state representations are learned from partially observed
inputs (Ellis et al., 2018). However, neither of these method
classes attempt to solve the full latent state learning problem
that underlies the reactive setting. There, not only what
the latent state representation is for every input (time point)
must be learned, as in unsupervised learning, but also how
that latent state evolves over time must be identified, in the
form of programmatic rules.

For concreteness, we introduce the simple yet rich domain
of Atari-style, time-varying 2D grid worlds (Figure 1) that
we consider in this paper, which demonstrates these short-
comings of inductive program synthesis. This domain is of
considerable interest in the AI and cognitive science com-
munities, drawing its relevance from the fact that humans
are able to learn causal theories—full explanations of which
stimuli cause which changes in the environment—of grid
worlds incredibly quickly, a feat yet to be replicated by AI.

In the Mario-style game in this domain that is shown in Fig-
ure 1, an agent (red) moves around with arrow key presses
and can collect coins (yellow). If the agent has collected

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

a positive number of coins, when the human player clicks,
a bullet (gray) is released upwards from the agent’s posi-
tion, and the agent’s coin count is decremented. Otherwise,
clicking does nothing. Notably, the number of coins that
the agent possesses is not displayed anywhere on the grid at
any time, so the only way to write a program that models
this behavior is to define an unobserved or latent variable,
which tracks the number of coins (bullets) possessed by the
agent. In other words, there is no way to express why bullet
addition takes place using just the current visible state of
the program: the objects (with their locations and shapes)
and current user action (click, key press, or none). Instead,
we must define an invisible variable that can distinguish
between two grid frames that are visually equivalent, but
in which the agent has collected different numbers of coins
(zero vs. some). Synthesizing this latent variable involves
both identifying the variable’s initial value, as well as learn-
ing functions that dictate when (on what stimulus) and how
(increment, decrement, etc.) that value will change. Cru-
cially, learning this dynamical latent state-based program
from observations alone (a sequence of grid frames and user
actions) is not feasible with standard techniques.

To address this gap between current inductive program syn-
thesis approaches and the reactive setting, we develop a
novel synthesis algorithm that unites two largely orthogonal
communities within programming languages: the functional
synthesis and automata synthesis communities. Specifi-
cally, we show that we can inductively synthesize reactive
programs by splitting synthesis into two procedures, a func-
tional synthesis procedure and an automata synthesis pro-
cedure. The functional synthesis step tries to synthesize
the parts of the program that do not depend on latent state.
If functional synthesis fails to synthesize a program com-
ponent explaining an observation, the automata synthesis
procedure is called. The automata synthesis procedure is
so named because the time-varying latent state in a reactive
system can be viewed as a finite state automaton, where the
labels on the automaton transitions are predicates in the un-
derlying domain-specific language (DSL) used for synthesis.
At a high level, based on the specifics of how the functional
synthesis step failed, the automata synthesis procedure en-
riches the original program state with particular new latent
structure (e.g. a time-varying latent variable like number of
coins) that then allows that functional step to succeed.

By combining functional and automata synthesis techniques,
our approach expands the horizon of problems that can be
solved by either method alone. While the functional synthe-
sis community has demonstrated impressive performance
at synthesizing complex functional transformations from
input-output data, the applicability of their techniques is
limited by the fact that they cannot synthesize state-based
models, including reactive systems, which are plentiful in
the real world. On the other hand, the automata synthesis

community has seen success at synthesizing finite-state au-
tomata or transition systems from traces, but their methods
do not scale to domains with very large numbers of states
(which are often more compactly represented using program
abstractions) (Vaandrager, 2017).

We suspect that this concept of integrating functional and
automata synthesis is valuable to a wide breadth of syn-
thesis domains. In this paper, we demonstrate its value by
instantiating it in the particular domain of 2D Atari-style
grid-worlds. We develop a DSL called AUTUMN (from au-
tomaton) that is designed to concisely express a variety of
causal dynamics within these grids. The inductive synthesis
problem addressed by our algorithm is, given a sequence of
observed grid frames and corresponding user actions (clicks
and keypresses), to synthesize the program in the AUTUMN
language that generates the observations. Since AUTUMN
programs encode causal dynamics, this synthesis problem is
one of causal theory induction, important in both cognitive
science and AI. These fields aspire to the goal of develop-
ing an artificial agent that can learn causal theories as well
as humans can, for which our hybrid functional-automata
synthesis approach offers a potential route.

Our synthesis algorithm, named AUTUMNSYNTH, has three
variant implementations, each differing in the algorithm
used to perform automata synthesis from observed data.
Two of these algorithms rely on the Sketch system (Solar-
Lezama, 2008) to discover a minimal latent state automaton
from examples, while the third algorithm is a heuristic that
greedily searches through the space of automata. We con-
struct a benchmark suite of 30 AUTUMN programs designed
to express the diversity of time-varying causal models that
may be manifested in 2D grids, and evaluate our algorithm
implementations on this benchmark. We further test on
an externally-sourced benchmark of 27 grid world video
games. Though subject to change as the work progresses, in
our preliminary results, we find that our heuristic algorithm
solves most of the benchmarks in both our own suite and the
externally-sourced one, outperforming the Sketch methods
and also synthesizing some large latent state automata along
the way, a signal of the promise of our formulation.

2. Overview
In this section, we give a high-level overview of the AU-
TUMN language and AUTUMNSYNTH algorithm.

2.1. The AUTUMN Language

The AUTUMN language was designed to concisely express
a rich variety of causal mechanisms in interactive 2D grid
worlds. The language is functional reactive, indicating that
it augments the standard functional language definition with
primitive support for temporal events. The key elements

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

of an AUTUMN program are (1) object type definitions, (2)
object instance and latent variable definitions, and (3) on-
clauses. The most interesting component to synthesize are
these on-clauses, which describe the causal dynamics of the
model via a sequence of statements with the syntax

on event
update function

where event is a predicate and update function is a
modification to an object or latent variable with the form
var = expr, which takes place when event is true.

2.2. Synthesis Example

Synthesizing the correct AUTUMN program from observed
data involves determining the object types, object instance
and latent variable definitions, and on-clauses described
previously. The AUTUMNSYNTH algorithm, as an end-to-
end synthesis algorithm taking images as input, consists of
four distinct steps, each producing a new representation of
the input sequence. These steps are

1. perception, in which object types and instances are
parsed from the observed grid frames;

2. object tracking, which involves assigning each object in
a frame to either (1) an object in the subsequent frame,
deemed to be its transformed image in the next time, or
(2) no object, indicating that the object was removed in
the next time;

3. update function synthesis, in which AUTUMN expres-
sions, called update functions, describing each object-
object mapping from Step 2 are found; and

4. event and automata synthesis, in which AUTUMN events
(predicates) that cause each update function from Step 3
are sought, and new latent state in the form of automata
is constructed upon event search failure.

We provide some intuition by briefly describing how these
steps are used to synthesize the Mario program.

2.2.1. PERCEPTION

The object perception step first extracts the object types and
object instances from the input sequence of grid frames.
The object types include (1) a general single-cell type with
a string color parameter corresponding to the (red) agent,
(yellow) coin, and (gray) bullet objects and (2) a platform
type that is a row of three orange cells. A list of object
instances is extracted from each grid frame in the input
sequence. For example, one object instance in the first grid
frame is a red single-celled object (agent) at position (7, 15).

2.2.2. OBJECT TRACKING

Next, the object tracking step determines how each object in
each grid frame changes to become a new object in the next
grid frame. For example, it identifies that the agent object
at position (7, 15) in the second grid frame corresponds to
the agent object at position (6, 15) in the third grid frame
(i.e. it moved left). Intuitively, this step tracks the changes
undergone by every object across all grid frames.

2.2.3. UPDATE FUNCTION SYNTHESIS

In the third step of update function synthesis, for each map-
ping between an object in one grid frame and an object
in the next that is determined in Step 2, an AUTUMN ex-
pression is sought that describes that object-object mapping.
For example, this step identifies that the expression agent
= moveLeft (prev agent) accurately describes the
change undergone by the agent object between the first
and second grid frames. Often, there are multiple such
expressions that match any given mapping. For example,
the agent’s left movement during the first time step might
also be described by agent = moveClosest (prev
agent) Platform, which indicates movement one unit
towards the nearest object of type Platform. The update
function synthesis step collects a set of these possibilities
for each object mapping. Ultimately, one update function
is selected as the single description for each object-object
mapping during the final step of cause synthesis.

2.2.4. EVENT AND AUTOMATA SYNTHESIS

Finally, the cause synthesis step searches for an AUTUMN
event or predicate that triggers each update function identi-
fied in Step 3. For now, we will assume that we have already
selected a single update function that matches each object-
object mapping from the set of all possible update functions
that do so; we will explain how we perform this selection
process in Section 3. To find an AUTUMN event that triggers
a particular update function, we collect the set of times that
the update function takes place, and enumerate through a
space of AUTUMN events until we find one that evaluates to
true at each of those times. For example, say that the agent
object in Mario undergoes the update function agent =
moveLeft (prev agent) at times 1, 4, and 5. If the
AUTUMN event left, which indicates that a left keypress
has occurred, evaluates to true at those three times, then the
on-clause

on left
agent = moveLeft (prev agent)

accurately describes that particular update function’s occur-
rence. The search space of AUTUMN predicates is defined
over the program state, which consists of the current ob-
ject instances, latent variables, and user events. Initially,

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

Figure 1. Top row: Stills from the Mario model. The red agent initially cannot shoot bullets (purple), but after jumping up and collecting
coins (yellow), shoots on a user click. The agent can no longer shoot when all its bullets are used up. A bullet kills the blue enemy.
Bottom-Left: Diagram of automaton representing the numCoins latent variable synthesized for the Mario program. The start value is
zero, and the accept values (i.e. the values during which clicked causes a bullet to be added to the scene) are 1 and 2. Bottom-Right:
AUTUMN description of the numCoins latent variable, as synthesized by AUTUMNSYNTH (variable renamed for simplicity).

there are not yet any latent variables in the program state, so
the possible events use only the objects and user events
(e.g. clicked, clicked agent, or intersects
bullet enemy). Lastly, this event-finding process is
complicated slightly by the fact that on-clauses may over-
ride each other, so perfect alignment between trigger event
and update function is not always necessary.

The interesting case in the cause synthesis step is when a
matching AUTUMN event cannot be found for an update
function. In the Mario example, this happens with the update
function bullets = addObj (prev bullets)
(Bullet (Position agent.origin)), which
describes a bullet object being added to the list of objects
named bullets. Bullet addition takes place at times 32,
41, and 57, but no event is found that evaluates to true
at exactly those times. Since the existing program state
does not give rise to any matching events, we augment the
program state by inventing a new latent variable that can be
used to express the desired predicate.

Specifically, we proceed by finding the “closest” event in the
event space that aligns with the update function. This is the
event that co-occurs with every update function occurrence,
and occurs during the fewest number of false positive times:
times when the event is true but the update function does
not occur. For bullet addition, this event is clicked, as
every bullet is added when a click takes place, but some
clicks do not add a bullet (specifically, at times 8, 9, 47,
and 59). Having identified this closest event, our goal is
then to construct a latent variable that acts as a finite state
automaton that switches states between the false positive
times and true positive times (i.e. the times when clicked
is true and the update function occurs). To be precise, the

new variable takes one set of values during the false positive
times, and another set of values during the true positive
times. Calling the values taken by the latent variable during
true positive times accept values, and those taken during the
false positive times non-accept values, the event

clicked && (latentV in [accept vals])

perfectly matches the observed update function times. This
is because clicked is true during a set of false positive
times, and latentV is in non-accept values at exactly
those times, so bullet addition does not take place, as de-
sired. The full AUTUMN definition of latentV, including
the transition on-clauses that change its value over time,
is shown in Figure 1. The variable name numCoins is
substituted to note the equivalence to a number of collected
coins tracker.

The challenge in constructing this latent variable is learn-
ing the transition on-clauses that update the value of the
variable at the appropriate times. Note that these transition
on-clauses represent edges in the automaton in Figure 1
(hence the term accept values). We perform the transition
learning step as part of a general automaton search proce-
dure, implemented via a SAT solver as well as heuristically.

3. Experiments
For each model in our own benchmark suite and the external
suite, we manually constructed an input sequence of user
actions. In our preliminary results, AUTUMNSYNTH syn-
thesized 27 out of 30 programs in our suite and 21 out of
27 programs in the external suite (Tsividis et al., 2021); see
Appendix for details.

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

References
Ellis, K., Ritchie, D., Solar-Lezama, A., and Tenenbaum,

J. Learning to infer graphics programs from hand-drawn
images. In NeurIPS, 2018.

Ellis, K., Nye, M. I., Pu, Y., Sosa, F., Tenenbaum, J., and
Solar-Lezama, A. Write, execute, assess: Program syn-
thesis with a REPL. In Wallach, H. M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 9165–9174, 2019.

Ellis, K., Albright, A., Solar-Lezama, A., Tenenbaum, J. B.,
and O’Donnell, T. J. Synthesizing theories of human
language with bayesian program induction. 2019. In
prep.

Nandi, C., Willsey, M., Anderson, A., Wilcox, J. R.,
Darulova, E., Grossman, D., and Tatlock, Z. Syn-
thesizing structured cad models with equality satura-
tion and inverse transformations. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, pp.
31–44, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450376136. doi: 10.
1145/3385412.3386012. URL https://doi.org/
10.1145/3385412.3386012.

Solar-Lezama, A. Program Synthesis by Sketch-
ing. PhD thesis, University of California, Berkeley,
2008. URL http://people.csail.mit.edu/
asolar/papers/thesis.pdf.

Tsividis, P. A., Loula, J., Burga, J., Foss, N., Campero,
A., Pouncy, T., Gershman, S. J., and Tenenbaum, J. B.
Human-level reinforcement learning through theory-
based modeling, exploration, and planning, 2021. URL
https://arxiv.org/abs/2107.12544.

Vaandrager, F. Model learning. Commun. ACM, 60
(2):86–95, January 2017. ISSN 0001-0782. doi:
10.1145/2967606. URL https://doi.org/10.
1145/2967606.

https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3385412.3386012
http://people.csail.mit.edu/asolar/papers/thesis.pdf
http://people.csail.mit.edu/asolar/papers/thesis.pdf
https://arxiv.org/abs/2107.12544
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

A. Further AUTUMN Language Details
Every AUTUMN program is composed of four parts (Figure 2). The first part defines the grid dimensions and background
color. The second part defines object types, which are simply structs which define an object shape, or a list of 2D positions
each associated with a color, as well as a set of internal fields, which store additional information about the object (e.g.
a Boolean healthy field may store an indicator of the object’s health). The third part defines object instances, which
are concrete instantiations of the object types defined previously, as well as latent variables, which are values with type
int, string, or bool. Object instances and latent variables are defined using a primitive AUTUMN language construct
called initnext, which defines a stream of values over time via the syntax var = init expr1 next expr2. The
initial value of the variable (expr1) is set with init, and the value at later time steps is defined using next. The next
expression (expr2) is re-evaluated at each subsequent time step to produce the new value of the variable at the present time.
Further, the previous value of a variable may be accessed using the primitive prev, e.g. prev var. Indeed, the next
expression frequently utilizes the prev primitive to express dependence on the past. For example, the definition of the
Mario object in the example program from the introduction is mario = init (Mario (Position 7 15)) next
(moveDownNoCollision (prev mario)), indicating that later values of Mario should move down one unit from
the previous value whenever that is possible without collision.

Finally, the fourth segment of an AUTUMN program defines what we call on-clauses, which are expressed in the form

on event
update function,

where event is a predicate (Boolean expression) and update function is a variable update of the form var = expr,
or multiple such updates. An on-clause represents an override of the default modification to a variable that is defined in
the next clause. In particular, when the event predicate evaluates to true, the new value of the variable var at that
specific time is computed by evaluating the associated update function instead of the standard next expression.
Each on-clause may contain multiple update statements for different variables, and a single program may contain multiple
on-clauses. In the latter scenario, the on-clauses are evaluated sequentially, with the effect that later on-clauses may update a
variable in a way that composes with updates from earlier on-clauses, or completely overrides it.

B. Some Evaluation Details
Due to the page limit, we emphasize that the exposition of our method is a high-level one, omitting lower-level details in
the interest of providing an intuitive sense of the technique. For example, one detail skipped for conciseness is that, when
selecting a co-occurring event as described in Section 2.2.4., the event with the fewest false positives is chosen from a
subset of the event space rather than the full event space itself, where the subset consists of events more likely to be actual
co-occurring events based on our knowledge of the domain. This reduces ambiguity due to there being multiple co-occurring
events that match a given update function. These details will be fully explained in the final version of our paper.

In addition, the ongoing nature of our submission manifests in the fact that several aspects of our evaluation design will be
updated before the final version of the paper, especially with respect to the second, externally-sourced benchmark suite. In
particular, we manually curated input sequences for our benchmarks in a way we knew would be compatible with heuristics
embedded in our algorithm. In future work, we also plan to evaluate on input sequences generated by other, non-expert
users in a user study. We further note that we currently declare synthesis success if the synthesized program generates the
input observation sequence, though it need not be semantically equivalent to the ground-truth program. We plan to measure
proximity to the ground-truth program in the future by evaluating both the synthesized and ground-truth programs on an
independent set of test input sequences, and determining how often both programs produce the same output.

Regarding the external benchmark suite, we note that many of those grid-world models actually exhibit some random
behavior. While a very small amount of non-determinism is also present in a few of our own benchmark models and is
handled by AUTUMNSYNTH, we had to manually check that those synthesized programs were accurate by inspection,
since it is difficult to automatically check if a particular observation sequence falls into the set that may be produced
by a nondeterministic AUTUMN program. (To be more precise about the randomness handling in the algorithm, if a
deterministic program is not found, the method searches for (deterministic) events that match update functions that may use
a uniformChoice library function, e.g. bullets = addObj bullets (Bullet (uniformChoice (prev
sources)).origin)). Since the AUTUMN programs synthesized to model the external benchmarks are quite a bit

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

Figure 2. AUTUMN program describing the Water Plug model. In the first frame, the purple structure at the bottom is a vessel, and the
orange structure is a plug that does not let water pass into the vessel. Excluding the top row of buttons, purple squares are vessel particles,
orange squares are plug particles, and blue squares are water particles. Clicking an uncolored (free) position adds a particle to that position,
where the type of particle depends on which of the top-left three buttons was clicked last. The right-side frames are in order (from top to
bottom) but with time jumps: the user events during these jumps are the following: 1-2: clicking several free positions (new purple);
2-3: clicking top orange button then several free positions (new orange); 3-4: clicking top blue button then several free positions (new
blue, though water moves down rather than being stationary); 4-5: clicking black button (orange removed); 5-6: clicking red button (all
removed). We also note that the grid size (16 by 16) and background color (white) definitions are omitted for space reasons.

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

longer than those for our own benchmark suite, we have not yet performed this manual check on all of those synthesized
programs, so it is possible that some are not correct. However, we automatically checked that the deterministic AUTUMN
programs synthesized were correct (i.e. produced the given observation sequence), and spot-checked one of the more
complex non-deterministic programs (the Aliens benchmark), and found it was correct by manual inspection. This suggests
that our synthesizer is operating correctly on this second benchmark suite.

Finally, we take care to emphasize again that this is preliminary work, subject to change as additional progress is made, and
should not be used as the basis for overzealous generalization. Still, the fact that the complex dynamics, and especially
latent state automata, that underlie these models is being captured in some form by our procedure is exciting.

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

C. Results

Figure 3. Descriptions of the 30 benchmark programs in our AUTUMN benchmark suite, called the Causal Inductive Synthesis Corpus
(CISC).

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

Figure 4. Table of input/output lengths and algorithm runtimes on each of the benchmark programs. The column header abbreviations
signify the following: # of A. → # of Automata, Max # of A. S. → Max. # of Automaton States, Max # of A. T. → Max. # of Automaton
Transitions, # of O.C. → # of On-Clauses. A bottom symbol indicates timeout after 24 hours. An X symbol indicates that the benchmark’s
solution was outside the support of the synthesis algorithms and thus we did not time the algorithms on these benchmarks. In addition, the
N/A’s for the Sketch and Divide & Conquer (D&C) Sketch runtimes on the first six benchmarks are there because those models do not
possess latent state, while the three algorithms vary only in their latent automata synthesis procedures. Since we wanted to highlight the
runtime differences arising from core automata synthesis differences instead of lower-level algorithmic choices needed to support them
(which would be more prominent in models without latent state), we have only evaluated the Heuristic algorithm on these non-latent-state
based models for our first evaluation.

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

Figure 5. Sample latent state automata synthesized by AUTUMNSYNTH. (a) Paint model. Each state corresponds to a different color,
indicating the color of the block added when a user clicks on an empty grid square. Pressing up cycles through the colors. (b) Gravity
III model. Each state corresponds to one of the nine directions of motion formed by crossing three possible x-directions (-1, 0, 1) with
y-directions (-1, 0, 1). (c) Water Plug model. Clicking one of three colored buttons changes the color of the block added when a user
clicks an empty grid cell to the color of the button. (d) Wind model. Snow particles fall downward, left-diagonally, and right-diagonally,
depending on the wind state that changes with left/right arrow keys. (e) Count IV model. Instead of giving the AUTUMN language
description for this automaton, we show the on-clauses for the update functions that depend on the latent variable instead. Here, a particle
moves left if the total number of left presses is greater than the total number of right presses up to a maximum difference of 4. It moves
right according to a similar rule, and is stationary in state zero.

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

Table 1. Preliminary results from running AUTUMNSYNTH on the external benchmark suite. The runtimes indicate that the
synthesis algorithm terminated with a synthesized program, not that the synthesized program necessarily exactly matches the input
frame, since that is challenging to automatically check due to the randomness exhibited by most models (exact match checks are
performed for the eight deterministic models in the suite, however). As such, it is possible that some of these synthesis successes
are not perfect matches to the input sequence, since our checks by manual inspection may not be complete. This will be updated
for the final version of our paper; see Appendix B for more details.

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

D. Additional Figures

Figure 6. A full observation trace from the Mario program. Black arrows indicate user keypresses and circles indicate user clicks.

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

Figure 7. A sample of AUTUMN programs. Clockwise from top-left: water interacting with a sink and sink plug a clone of Space Invaders,
plants growing under sunlight and water, a simplified implementation of Mario, a simplified clone of Microsoft Paint, a weather simulation,
snow falling left or right with varying wind, an alternative gravity simulation, a sand castle susceptible to destruction by water, and ants
foraging for food.

Combining Functional and Automata Synthesis to Discover Causal Reactive Programs

Figure 8. Stills from a sample of programs in the EMPA suite, resized to fit neatly into the figure. (a) Avoid George, where the dark blue
agent must avoid the yellow enemy, which chases it and the randomly moving green objects. (b) Closing Gates, in which the dark blue
agent must get to the green goal before the gates close. (c) Portals, in which some blocks teleport the agent to other blocks. (d) My Aliens,
in which the agent collects orange and is killed by purple objects. (e) Plaque Attack, in which the agent can shoot at orange enemies
before they reach the yellow goals. (f) Bees and Birds, where the randomly moving yellow objects can kill the enemy before it reaches the
green goal.

